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1 Introduction

Recently, there has been significant interest in constructing more robust solutions to stochastic optimization
problems. In particular, consider the following general stochastic optimization problem:

min
x∈X

EQ0 [f(x, ξ)] , (1.1)

where X is the decision set and Q0, the distribution of ξ, is a probability distribution supported on [0, 1].
This kind of problem can be solved numerically or (in special cases) in closed form if we know the exact
distribution of Q0. Unfortunately, in practice one rarely knows the exact distribution Q0. Instead, one often
has only partial information about Q0, which may include limited distributional information such as a few
moments or quantiles.

In a seminal paper, Scarf proposed and solved a “robust version” of Problem (1.1). More precisely, suppose
that instead of knowing Q0 exactly, one only knew the first two moments of Q0, and wanted to optimize
against an adversary who could pick a “worst-case” distribution subject to those moment constraints. Then
one is faced with the min-max optimization problem

min
x∈X

max
Q:

∫ 1
0
xkdQ(x)=µk,k=1,2

EQ [f(x, ξ)] .

In [10], the author solves this problem for the special case in which f is a 2-piece piece-wise linear function,
and interprets his results in terms of how one would optimally manage an inventory.

Of course, one might have access to more than just two moments. Furthermore, one would suspect that
as one is given access to more moments:

• the value of the robust optimization problem converges to that of the “full-information” problem (1.1);

• the computational difficulty of solving the robust problem exactly increases.

We propose a robust optimization model against a worst scenario as follows:

min
x∈X

max
Q∈Mn

EQ [f(x, ξ)] , (1.2)

where Mn is a set of probability measures supported on [0, 1] with fixed the first n moments (
∫
xkdQ(x) =∫

xkdQ0(x) := µk, k = 0, . . . , n). We note that a discrete version of (1.2), called Discrete Moment Problem,
was proposed by Préopa [8], and shown to have applications in economics and finance [7].

Although it is not difficult to show that the optimal value of (1.2) eventually converges to the optimal
value of (1.1) as n→∞, it is an interesting and challenging task to study the rate of convergence.

We note that the structure of the set Mn is not well understood, except for some general results, including
the fact that Mn is convex, and its extremal distributions are those probability measures supported on at
most n+ 1 points (cf. Theorems 1.1 and 6.1 in [5]). In this work, we propose to study the relevant trade-off
between accuracy and complexity, by asking

(A). What is the convergence rate for the optimal objective function value of (1.2) as n→∞?

(B). What is the convergence rate for the optimal choice of x in (1.2) as n→∞?

(C). How can we devise efficient approximation algorithms when many moments are given?
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2 Research Plan

Note that if f(x, ξ) was a degree-n polynomial in ξ, then the first n moments would uniquely pin down
its value, reducing (1.2) to a one-dimensional (in x) optimization problem. We propose to approximate
f(x, ξ) by a degree-n polynomial in ξ, and formally bound the error. The following well-known polynomial
approximation result is due to Jackson (cf. [6], [9]): if f is a continuous function on [a, b], then

En (f ; [a, b]) ≤ 6ω

(
b− a
2n

; f ; [a, b]

)
, where

En (f ; [a, b]) := inf
{
||f − p||L∞[a,b] : p is a real polynomial function of degree at most n

}
,

ω (δ; f ; [a, b]) := sup
|x1−x2|≤δ, x1,x2∈[a,b]

|f(x1)− f(x2)|.

It is not difficult to find an upper bound of the convergence rate for optimal values directly from Jackson’s
Approximation. For example, if f(x, ξ) = |x− ξ|, the rate of convergence is no worse than O( 1

n ). However,
the difficulty is to investigate whether this upper bound is tight (Question (A)). In other words, we would
like to find a distribution Q0, an objective function f(x, ξ), and a sequence Qn ∈Mn such that this rate can
be achieved. Two possible approaches are proposed as below, which we illustrate through the special case
f(x, ξ) = |x− ξ| that is typically used in inventory management (cf. [10], [12]), for the sake of concreteness.

1). Once we fix x ∈ X , the dual problem of maxQ∈Mn EQ [|x− ξ|] is

min
y∈Rn+1

∑n
i=0 yiµi

s.t. x− ξ ≤
∑n
i=0 yiξ

i, ∀ξ ∈ [0, 1]
ξ − x ≤

∑n
i=0 yiξ

i, ∀ξ ∈ [0, 1].

It can be proved that there is no duality gap between the primal and the dual problems (cf. Corollary
3.1 in [11]). Moreover, Proposition 3.1 in [2] states that

∑n
i=0 yiξ

i ≥ 0 for all ξ ∈ [0, 1] if and only if there
exists a positive semidefinite matrix X = [xij ]i,j=0,...,n such that∑

i,j:i+j=2`−1

xij = 0, ` = 1, . . . , n and
∑

i,j:i+j=2`

xij =
∑̀
i=0

yi

(
n− i
`− i

)
, ` = 0, . . . , n

Hence it is possible to reformulate minx∈X maxQ∈Mn
EQ [|x− ξ|] as an equivalent semidefinite program,

which can be efficiently solved by interior point methods (cf. [1]). Theoretically, we hope to take advantage
of this equivalent formulation to prove that Jackson’s bound can be attained, and is thus tight.

2). A different approach is based on the following observation:

min
x∈X

max
Q∈Mn

EQ [|x− ξ|] ≥ max
Q∈Mn

min
x∈X

EQ [|x− ξ|] = max
Q∈Mn

EQ [|median(Q)− ξ|] (2.1)

If we restrict ourselves to those distributions supported on
{
i
n

}n
i=0

, and fix the value of the median m (e.g.
1
2 ), then the optimal value of the following linear program gives a lower bound of the optimal value of (2.1):

max
p∈Rn+1

+

∑n
i=0 pi

∣∣m− i
n

∣∣
s.t.

∑n
i=0( in )kpi = µk, ∀ k = 0, . . . , n;∑bnmc
i=0 pi ≥ .5,

∑n
i=dnme pi ≥ .5

We would like to show tightness of Jackson’s bound by studying this linear program (or its dual).
If we could solve Question (A), hopefully the methodology would enlighten us on solving Question (B),

too. We have preliminary results about finding a general upper bound of the convergence rate for optimal
solutions, and believe that we can make progress on either proving tightness or improving the bound.

Finally, we would like to address Question (C): finding an efficient approximation algorithms when many
moments are given. Fortunately, our approach to the problem yields a natural approximation algorithm,
in the following sense. It follows from Jackson’s approximation that ANY CANDIDATE DISTRIBUTION
from Mn will yield nearly the same value as in the “full-information” problem (1.1). Thus one can simply
solve problem (1.1), for which many efficient algorithms are known, to get a suitable approximation.

Alternatively, one could actually construct the “best” low-degree polynomial approximation (using, for
example, the technique given in [9]), which reduces the optimization to a one-dimensional polynomial mini-
mization problem, for which many techniques are known, e.g. semidefinite programming (cf. [3], [4]).
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