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1 Introduction
Consider the problem of deciding whether a graph is 3-colorable. This problem is NP-complete. The optimization
version of this problem is, given a 3-colorable graph G, color it using as few colors as possible. In the regime of
polynomial time approximation algorithms, this problem has been studied extensively [Wig82, Blu94, KMS98, ACC06,
Chl07]. The current best known approximation factor is achieved by an algorithm due to Kawarabayashi and Thorup
[iKT12] which uses at most n0.2038 colors to color a 3-colorable graph. Surprisingly, very few lower bounds are known
for the approximability of the chromatic number of a graph. Dinur, Mossel and Regev [DMR06] showed that it’s hard
to color a 3-colorable graph with O(1) colors based on a variant of Unique Games Conjecture. Feige, Langberg and
Schechtman [FLS02] showed that the simple SDP relaxation has an integrality gap of at least n0.157.

In a recent work, Barak, Raghavendra and Steurer [BRS11] and Guruswami and Sinop [GS11] showed a new way
to round vector solutions of semidefinite programming (SDP) hierarchies into integral solutions, based on a connection
between these hierarchies and the spectrum of the input graph. In another recent work [BBH+12], Barak et. al. gave a
natural polynomial time algorithm based on the ‘Sum of Squares’ SDP hierarchy that solves the previously proposed
hard instances for Unique Games [RS09, KS09, KPS10, BGH+11]. Along these line, we propose to study a new
approach towards sub-exponential time algorithms with improved approximation guarantees for combinatorial problems
like graph coloring, vertex cover, etc.

Barak et. al.’s algorithm [BRS11] can be viewed as a divide-and-conquer approach. Consider an instance I of
MAX 2-CSP. The constraint graph G of I is first partitioned into sets with small ε-threshold rank 1 such that only
O(ε) fraction of the edges are cut. This step is same as the preprocession step used in Arora, Barak and Steurer’s
sub-exponential time algorithm for unique games [ABS10]. Barak et. al. show that graphs with low threshold rank are
‘easy’. More formally, they show that O(rank1−ε(G) levels of the Lasserre hierarchy is sufficient to recover an integral
solution from the SDP’s vector solution whose cost2 is at most O(ε) lesser than that of the SDP solution.

2 Our Approach
The graph coloring problem can also be viewed as a constraint satisfaction problem. The problem asks to assign labels
to every vertex such that every pair of adjacent vertices has a different label. If the graph has low threshold rank, then
we can use the [BRS11] approach to find a coloring using a small number of colors. However, if the threshold rank
is high, then partitioning the graph into pieces with low threshold rank will not be helpful as there doesn’t seem to
be any coherent way of ensuring that adjacent vertices which are separated by the partitioning get different colors.
One difference between graph coloring CSP and the usual MAX − CSP regime is that in the graph coloring CSP the
constraints are hard, i.e. every pair of adjacent vertices must have a different labels. Though this might seem as an

1ε-threshold rank of a graph G, denoted by rank1−ε(G), is defined as the number of eigenvalues of the normalized adjacency matrix of G which
are larger than 1 − ε.

2The cost of a solution is the fraction of constraints satisfied by that assignment.
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additional constraint, this is actually usefull for our approach as it allows us to re-weigh the edges of the graph (without
changing the weighted degrees of the vertices) in an attempt to improve the threshold rank of the graph.

Closely related to threshold rank is the notion of collision probability. The t-step collision probability of a random
walk is the probability that two independent random walks of t steps starting from the same vertex 3 also finish at
the same vertex. Let CPt(G) denote the t-step collision probability of the random walk on the graph G. It is easy to
see that CPt(G) 6 rank1−ε(G)(1 − ε)2t. Computing the re-weighting of the graph which has the least t-step collision
probability is captured by a simple convex program and hence is tractable. We conjecture that if the graph has high
collision probability under every re-weighting, then the graph must have a small set with small vertex expansion.

Conjecture 2.1. Let G be a on n vertices such that rank1−ε(G′) > nΘ(η/γ) for every degree preserving re-weighting G′

of G. Then there exists a vertex set S of size at most n1−η/γ that satisfies φV (S ) 6 γc for some absolute constant c.

If this conjecture is true, it would yield a sub-exponential time algorithm for coloring a 3-colorable graph using
polylog n colors as follows. We fix γ to be some small constant, say 0.01. If the graph has high threshold rank under
every re-weighting, then by repeatedly applying the statement of this conjecture, we get a set S of size at most n/2
vertices such that every connected component in G\S has low threshold rank. Using the approach of [BRS11], we can
color the vertices in G\S with a small number of colors. We recurse on the vertices in S , but we make use of a different
set of colors for each recursion. Since the number of uncolored vertices after each round decreases by a factor of 2, the
algorithm terminates after at most log n rounds of recursion and having used O(log n) colors in all.

3 Global Correlation in Vector Solutions
As an attack on Conjecture 2.1, we propose a new random process on graphs, and show that if this process has high
collision probability, then the graph must have a small set with small vertex expansion. We conjecture that if the graph
has many eigenvalues close to 1 under every re-weighting of its edges, then this process must have a large collision
probability for most starting distributions.

The process starts with a probability mass of 1 at vertex some vertex, say i, i.e., µi,0( j) = 1 if j = i and 0 otherwise.
At time t, for each vertex j, the probability mass flows towards the vertex k with the maximum difference in probability
with rate proportional to the difference. More formally, let a j

def
= argmaxa∼ jµi,t(a) − µi,t( j), then the probability mass

flows from j to a j if µi,t(a j) − µi,t( j) > 0, and at a rate proportional to µi,t(a j) − µi,t( j). We show that the collision
probability of this process decreases exponentially with time.

Lemma 3.1. For the process outlined above, the collision probability is bounded by 4

CPt 6 e−λ∞t

For our purpose, it would be interesting to view this process in connection with the SDP vector solution {vi|i ∈ [n]}.
We define the local correlation to be � j,k∼µi,t 〈v j, vk〉

2. We conjecture that this process has high local correlation.

Conjecture 3.2. For any set of vectors {vi|i ∈ [n]} which form a feasible solution to the SDP relaxation of Graph
3-coloring

�
j,k∼µi,t

〈v j, vk〉
2 >

(
�
j∼k
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We define the global correlation to be�i, j〈vi, v j〉
2. [BRS11] show that if the SDP solution has high global correlation,

then rounding it to an integral solution is ‘easy’. It can be shown that if Conjecture 3.2 is true, then the vector solution
either has high global correlation, or high collision probability. In the former case we can use the approach of [BRS11]
to make progress. This case is akin to the case when the graph has low threshold rank. In the latter case, using
Lemma 3.1 and some additional machinery, we can show that graph has a small set with small vertex expansion. Infact,
Conjectures 2.1 and 3.2 can be shown to be equivalent.

3The starting vertex is chosen according to the stationary distribution of the random walk.
4λ∞ of a graph G is defined as λ∞

def
= minx∈�n

∑
i max j∼i(xi−x j)2∑
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∑
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